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Abstract

Closed diagrams as generalization of some analytic tableaux are discussed. Appli-
cation of closed diagram to search of optimum in discrete optimization problems is
presented. Then new branch and bound modifications such as dual and nontreelike
branch and bound methods, plait and bound method are advanced.
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1 Introduction

Many structures such as acceptable mating of Andrews [1], connection graph of Bibel [2],
combinatorial analytic tableaux of Cowen [3] in propositional calculus or dual systems of
Lovasz [4] and Menger [5] in graph theory can be considered as closed diagram which was
introduced in [6] (1971).

Diagram is a two colour hypergraph (A, B, D) where A is the set of vertices and both
B and D is a family of hyperedges — subsets of A. Diagram is called closed if every
minimal set 7 such that 7 Nb # () for every b € B (in this case set 7 is called as path in
B) contains some set from family D. It is convenient to represent sets from both B and
D with columns and to depict a diagram (A, B, D) as two-parts tableau (B|D).

Example 1. Let A = {a,b,c,d, e, f}. Then tableau

a ¢ € ]|a

(B|D):<b d fle ?1 Ie) ;)

represents the diagram (A,B,D). By fixing single element in each column from B we
shall get a path in B. The set {a,c, e} provides an instance of a path. It easy to verify
that each of all 8 paths contains some set from D. Thus diagram (A, B, D) is closed.

Closed diagram may be interpreted in propositional calculus as follows. Let p;,¢ € 1:m,
be propositional variables, A be the set of all literals and S}, 7 € 1: n, be subsets of A. Put
B = {{pi,-pi} |i € l:m}and D = {5, | j € 1: n}. Then closedness of diagram (A, B, D)
is equivalent that cnf

F1 = /\ \/ a
jEln aESJ'
is unsatisfiable and dnf
F2 = \/ /\ a
jElna€es;

is tautological. In the formula Fy (F3) we consider every valuation as a set of literals with
false (true) value. Then the statement “every path in B contains some set from D” is the
same as “every valuation is refutation for Fy” (“F5 is valid for every valuation”).



It follows in propositional case that closed diagram (A, B, D) coincides with connection
graph (matrix) of Bibel and acceptable mating of Andrews. Connections for matrix D are
sets from B.

Principal property of closed diagram is duality: if a diagram (A, B, D) is closed then
the diagram (A, D, B) is closed also. Or in symmetric form: diagram (A, B, D) is closed
iff every path in B has non-empty intersection with every path in D. The proof is given
in section 2.

Duality of closed diagrams makes possible to explain resolution method of Robinson
[7] and inverse method of Maslov [8] in invariant terms [6]. See Section 2 in more details.
Connection of closed diagrams with dual systems from graph theory [9]; positive solvabilily
of systems C'z = 0,z > 0 for real-valued matrices C' [10] and probability theory are briefly
outlined at the same place.

The emphasis is on application of closed diagrams in discrete optimization problem
(DOP) [11, 12, 13, 14, 15]. By DOP we mean the following problem.

Let Q@ = By X By X ... X B,, where B; , © € l:n, are given distinct finile sels, and
f:Q — R' is a function defined on Q. It is required to search some ¢* € Q such that
fl¢") =max{f(q) | ¢ € Q}.

Many well known discrete problems may be represented in the form of DOP. For
example, knapsack problem (here B; = {i,—i} where ¢ means that item ¢ is putting in
knapsack and =7 — no putting); plant location problem (here B; is the set of possible
variants of plant construction in the place ) and so on.

Every ¢ € Q is called solution. If I is a fixed subset of the set of indices {1: n} then
every 0 € [[;c; B; is called as partial solution and designed as PS.

Let us interpret in diagram (A,B,D) the family B as the family {B; | ¢ € 1:n}
and the family D as some PS family. Then closedness of the diagram is equivalent to
completeness of D in the sense that every solution from Q) is a extension of some PS from
D [13]. Section 3 contains representation of DOP by diagrams in more details.

We call PS family D shutted if set R(D) of all extensions of PS from D is evaluated
in such way that either it is coming to light that ¢* ¢ R(D) or it is found ¢, such that
f(q0) = max{f(q) | ¢ € R(D)}. If diagram (A, B, D) for shutted D proves to be closed
then optimal solution ¢* is equal to ¢o.

Primal and dual approaches can be used for search of f(¢*): in primal (dual) complete
(shutted) PS families D are constructed step by step and process will stop when current
D becomes shutted (complete). Closed diagrams give possibility to realize both of these
approaches. Dual branch and bound method as opposed to usual branch and bound method
is described in Section 4. The rule of closed diagrams generation and on its basis plait
and bound method as generalization of branch and bound method are presented in Section
5. Some conclusions about comparative efficiency of presented methods are contained in
Section 6. Computer simulations have been made for knapsack problem.

2 Interpretations of closed diagrams

2.1 Duality

Define more precisely closed diagram.

Let A be a finite set and B and D be non-empty family of non-empty subsets of A.
The tuple (A, B, D) is called diagram. Every minimal set © such that 7 Nb # (} for every
b € B is called path in B. Diagram (A, B, D) is called closed if every path in B contains
some set from family D.

Theorem 1 (duality). If diagram (A, B, D) is closed then diagram (A,D,B) is closed.



Proof. Let exists a path p in D such that for every set b € B would be b € p. Then
we can define the path 7 in B such that # N p = (). Thus path 7 contains no one set from
D that is in contradiction with closedness (4,B,D). O

It follows from the proof that diagram (A,B,D) is closed iff every path in B has
non-emply intersection with every path in D.

To verify closedness of a diagram (A, B, D) we may construct either primal tree or dual
tree. In primal (dual) tree branching in every node is defined by some set from B (D).
For closed diagram (A, B, D) every branch from primal (dual) tree contains a set from D
(B).

Example 2. Let A = {a,b,¢,d,e, f}. Consider the diagram (A,B,D) presented by
tableau
a a

(B|D)=a ¢ e cla ¢ e c
b d f e|ld f b

Then follows trees are instances of primal and dual trees.

Primal tree Dual tree

Primal (dual) tree is a proof of closedness of the diagram (A, B, D) ((A,D, B)).

2.2 Propositional calculus

Let p;,7 € 1:m, be propositional variables, A be the set of all literals and 5;,j € 1:n, be
subsets of A. We shall consider the formula

F:\//\a

j€ln aESJ-

Put B = {{p;,-p;} | i € 1:m} and D = {S; | j € 1:n}. Then closedness of diagram
(A,B,D) is equivalent that F' is tautological. Indeed, if we shall consider a valuation as a
set of literals with true value then path in B would be defined. If every such path contains
some set from D then would be disjunct in F with all {rue entries for every valuation and
F would be tautology. Both primal and dual tree in this case gives a deduction for F and
they are combinatorial analytic tableaux in the meaning [3].

The Resolution rule of Robinson [7] and rule B of Maslov’s inverse method [8] can be
considered as special cases of follows ReB rule [6, 16]. At first, some definitions.

Diagram (A’,B’,D’) is subdiagram of (A,B,D)if A’ C A,B’C B,D’' C D.

We shall say that a set s" is relazation of the set s if s is a subset of s.

A diagram (A,B*,D) ((A,B,D")) is called left (right) relazation of the diagram
(A,B,D) if the family B* (D) is getting from B (D) by replacing some sets b € B
(d € D) with its relaxations b" (d").

If left (right) relaxation (A, B*, D) (
the set L = Uyeg b\ 0" (R =Upd\d

Now we can to define ReB rule:
Let (A,B,D) be a diagram, (A',B’,D’) be some its subdiagram. Suppose that closed left
or right relaxation of this subdiagram exists. Let L or R be corresponding left or right bar.

(A,B,D")) of the diagram (A, B, D) is closed then
") is called left (right) bar.



Add the bar L to family B (the bar R to family D) and delete from the family B (D) each
set s such that the bar L (R) is a relaxation of s. Resulling diagram is called Re B-diagram
for the diagram (A, B, D).

If right relaxation is of the form ( P2

P2

. ﬂm) then ReB rule is being resolution rule
and right bar R is a clause.
If left relaxation is of the form (57]5;) where 57 = {{a} | @ € S;} then ReB rule is B
rule and left bar L is a F-favorable set [16].
Example 1.(continued) Let F = (py A p2) V (p1 A =pa) V (mp1 A p3) V (—=p1 A —ps).
Then A = {py,—p1,p2, —P2, P3, ps} and corresponding to F diagram is presented by
P P TP Th )

tableau
P1 P2 P3
P P2 P3| P2 P2 Ps  TP3

which the same tableau as tableau in above example 1.
The diagram ( P2 ) is right relaxation of subdiagram ( P2

P2 P2
—|p1 —|p1
Ps 7Ps D1
is ReB-diagram and right bar R = {p;} is a clause.
The diagram ( TP ) is left relaxation of subdiagram ( p1 Ps

P3 p1 TPs

P D1 ), diagram

P2 Tp2 P2 Tp2

P1 P2 Ps
P11 TP2 TIP3

TP ) , diagram

“pP1 P3 Ps

P P P2 Ps
“pP3 TP1 TP2 TIP3

P Pr TP T
P2 P2 Ps 7P3

is ReB-diagram and left bar L = {p;, —p3} is F-favorable set.

Theorem 2. A ReB-diagram for the diagram (A, B, D) is closed <= diagram (A, B, D)
is closed.

Proof. Suppose that ReB-diagram is got from (A, B, D) by right relaxation. Consid-
eration in left case is the same.

At first, note that if we delete from D set such that its relaxation belongs to D also
then closedness of diagram (A, B,D) would be preserved. Indeed, if the path = in B
contains a set that 7 contains its subset also.

It is obvious that if diagram (A, B, D) be closed then by adding new set to D or B we
shall get closed diagram again.

It remains to be seen whether ReB-diagram would being unclosed if diagram (A, B, D)
is unclosed. By duality, in this case there is a path p in D containing no set from B. The
path p contains at least one element from the right bar R because relaxation of considering
in ReB rule subdiagram is closed diagram. Hence p is a path in right part of ReB-diagram
also and unclosedness is preserved. 0O

Diagram (A, B, D) is closed and formula F is a tautology iff by successive using ReB
rule we shall get a ReB-diagram with empty left or right part finally.
2.3 Graph theory

Let G = (V, E) be a graph with two separated vertices v; and v,. Then set D of all joints
from v; to v, and set B of all cuts forms closed diagram (F,B,D). Well known flow
problem may be stated in the following way. Let D = {S;,7 € N} and for every @ € E
the capacity c(a) is assigned. Then the function

fle)= max{zjeNyj ‘Z{ﬂaesj}yj <cla),a€ E;y; > 0,5 € N}
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is called mazimal flow.
Well known Max-Flow-Min-Cut Theorem of L.Ford and D.Fulkerson is that

flo)= min{z c(a)| B € B}

a€p

for all nonnegative assignments ¢(a).
Let us replace set D of all joints and set B of all cuts by a families D and B in the
diagram meaning and define f(c) as above only with adding new conditions

ZijZC(a),ﬂGB.

JEN a€p

Then Max-Flow-Min-Cut Theorem is equivalent to closedness of the diagram (A4, B, D)
under the assumption that [N é| < 1 for every § € B and é§ € D. The proof is given in
[9].

Special case of this generalization is flow problem defined on the Lovasz’s pair (clutter
D, blocker B) [4] where D is a family of sets such that every set is not a subset of another
one and B is the family of all paths in D.

Symmetric form of duality gives possibility to extend the notion ”closed” on k-tuple
(A,B1,B,, -, By) where as in the case of diagram each B; is a family of subsets from A.
Such k-tuple we call k-gram and k-gram (A, By, By, - -+, By) is called closedif (;¢q.,, 7 # 0
for all paths 7; in B;.

It has been found [9] that there is following association between graph colouring and
unclosedness of k-gram. Let G = (V, E) be a graph and k be fixed positive integer. Put
B;=F,iel:k.

Theorem 3. The k-gram (A,B1,B,,---,By) is unclosed < graph G is coloured by k
colour.

Proof. Every element from each B; = F,i € 1:k is being an edge {a, b} jointing vertices
a and b.

Let us suppose then graph G is coloured by k colours. Then there exists uncoloured
by ¢ colour vertex in every edge for every colour ¢ € 1: k. Form the set p; of uncoloured
by i colour vertices. The set p; gives non-empty intersection with every edge {a,b} € B;.
Thus p; contains a path 7; in B;. The intersection of all paths 7;,¢ € 1: k is empty because
otherwise would be existing an uncoloured vertex. Thus k-gram (A,B;,B,,---,By) is
unclosed.

On the other hand, let N;cq.m; = (0 for some paths 7;,7 € 1: k. Define complements
7=V \m,t€ 1:k. It follows that U;eq.,m, = V. Let us colour vertices ¢ € 7] by i colour
(if @ € Nyerm) for some I C 1:k then vertex a is coloured by anyone colour from I). Then
every vertex would be colouring and vertices of one edge would be colouring by distinct
colours. O

Reduction of tautologies to 3-colouring via diagram was made in [17].

2.4 Positive solvability of linear systems
Real-valued matrix C' is called solvable if the system
Cx=0, z>0, 2#0

has a solution and C' is called stable-solvable if it is solvable and remains solvable for any
variation of its elements preserving signs.



Solvable and stable solvable matrices plays an important part in the theory of linear
economic models [18]. Solvable (stable-solvable) matrices describe (stable) equilibrium
economic systems.

How solvable matrices are constructed?

Let C' be a real-valued m x n matrix. Assign to its j— column, j € 1:n the set S5
by including in this set literals ¢ if C;; > 0 and —i if C; < 0. Put A = ey, 1%, 1}
B={{i,—i}|i€1l:m}; D={S5;|j € 1:n} and form the diagram (A4,B,D) .

Example 3. For every real-valued matrix C' with scheme of signs

+ -+ 0 -
+ - =+ 0
+ - 0 - +

the diagram (A, B, D) be of the form

1 -1
1 2 3(2 =2 1 2 -1
-1 -2 3|3 -3 -2 =3 3

Theorem 4. A real-valued matriz C is stable-solvable <= its diagram (A,B,D) is
closed.

The proof is given in [10]. Based on separation theorem for convex sets (see for example
[18]) new proof is given in [19].

In paper [19] it is proved that each solvable matriz C" with possible deleting and copying
of some columns can be represented as a product LG of some matriz L and a stable-solvable
matriz G.

2.5 Probabilistic interpretation

Let (A,B,D) be a diagram such that 8, N By = 0 for every (3, 32 € B, 81 # Bs.

We shall consider every a € A as an elementary event with positive probability p(a).
Suppose that belonging to different sets 3 € B events are independent. Interpret every
set 3 € B as the event consisting in that there is fulfilled one of inconsistent events a € 5.
Thus probability u(3) of this event is equal to 3, p(a). Suppose that

w(B) = Zp(a) =1 for every § € B.
a€ep
In other words we interpret every set from family B as certain event.
Without loss of generality we shall suppose that
[N é| <1 forevery B € B and § € D.

Then every set ¢ from family D is a subpath of some path in B. And because of distinctions
of sets in B we can represent § as the event consisting in simultaneous fulfilling of all
independent events a € §. Thus the probability of this event is equal to

pu(8) = T p(a).

And finally we shall consider the family D as the event consisting in fulfilling at least one
event ¢ from family D. Let u(D) be the probability of this event.

Theorem 5. Diagram (A,B,D) is closed <= u(D) = 1.



Proof. Assign to every set § € D the set R(8) of all paths 7 in B such that § C 7.
Consider the set R(¢) as a event consisting in fulfilling at least one event 7 from family
R(6). All paths 7 from family R(é) are inconsistent in pairs because events a € § are
inconsistent for every g € B. Hence

pR@O) = > wm)y= > [Ipla)=

TER(S) TER(8) aE™
=[Iwr(e) > ] pla)=][]rla) = us).
a€éd TER(8) aem\é agd

Last equality follows from that

Z H pla) = 1.

TER(6) aem\é

And this equality is proved by induction with number ¢ of elements in the set = \ §. If
t =1 then we have ), ., p(a) = 1 for some 3 € B. In the case § = () we have

w(P)=> [Ipla)=1

TEP aET

where P is the set of all paths in B.
Thus probability p(6) of fulfilling of the event § is equal to the probability of fulfilling
at least one of the inconsistent events from R(8). It follows that probability of fulfilling at

least one event § from D is equal to the probability of fulfilling at least one of the events
from (J;.p R(6). That is

pD)=p(JRO) = > plr).

seD WEU&GDR(é)

But from definition R(6) it follows that (Jsep R(6) C P and

w({J B(6)) < u(P) = L.
5eD
It is not so hard to verify that closedeness of (A, B, D) is equivalent to that Jsep R(6) = P
which is to say that y(D)=1. O

It is a hard problem to define all paths from (Jscp R(6). However to calculate pu(|Jsep R(6))
we can use the formula of composite probability of dependent events [20]. Let for definite-
ness D = {5; | 7 € 1:n}. Then this formula is of the form

p( U B(S))= 3 (=71 >0 w1 R(S))

jEln t€ln IeP}! jeI

where P! is the set of all combinations of n things ¢ at a time.

Note that if there are in a combination I indices ¢ and j such that there exist aset 3 € B
and distinct events a;,a; € § such that a; € 5; and a; € S; then R(S;)(R(S;) = 0 and
#(Njer B(S;)) = 0 for such I. Tt follows from definition of the path in B and disjointness
of sets from B. In this case sets (or events) S; and 5; are inconsistent. Otherwise sets .5;
and S; are consistent. Moreover a combination [ is called consistent if sets 5; and 5; are
consistent for all pair {7, j} from I.

Only consistent combinations I produce nonzero items in the last sum. To select those
items define the graph of consistency G = (N, E): the set of its vertices is the set of indices
N = 1:n, and two vertices ¢, j are linked with an edge if sets 5; and 5; are consistent.



Then nonzero items will be produced only by complete subgraphs of the graph of
consistency. A complete subgraph of the graph of consistency is characterized by the set
I C N of its vertices and by its size {(I) = |I].

It follows from the definition of R(.S;) that

DR(SJ')ZD{WEP|SJ'§7T}={7TE7’| _USJ'QW}=R(_U5J')

for complete subgraph with vertices set I. Put S, = |J..; 5;. Then from the proof of

Jjel

() B(S;)) = w(R(S1)) = T p(a).

jel a€sSr

theorem 5 we have

Design G; the set of all complete subgraphs of the graph of consistency with size {. Then
finally the formula for calculation of u(D) is

p(D)=p( J R(S) = 3= >0 T pla).

jeELlin t€ln 1€G: a€ Sy
Example 3.(continued) Counsider the diagram (A, B, D) from this example. Put
p(i) = p(—i) = 1/2 for every ¢ = 1,2,3.

All sets in D are inconsistent in pair. Thus there are only 5 separated vertices in the graph
of consistency. Each complete subgraph consists only single vertex. Then,

p(D) = (1/2)°+ (1/2) + (1/2)" + (1/2)" + (1/2)* = 1

what is meant by theorem 5 that diagram (A, B, D) is closed.

Theorem 5 gives criterion of closedness of the diagram (A, B, D). By using last formula
we can select a polynomial class of verifiable by this criterion diagrams. It consists in such
diagrams that number of complete subgraphs of its graph of consistency polynomial grows
with growth of number of sets in D. For example diagrams with its graph of consistency
being bipartite or planar.

3 Representation of discrete optimization problem by closed
diagrams

3.1 Completeness and shuttedness of partial solutions family

Let discrete optimization problem (DOP), solutions and partial solution (PS) are defined
as in Introduction:

By DOP we mean following problem.

Let Q@ = By X By X ... X B,, where B; , © € l:n, are given distinct finile sels, and
[ :Q — R' is a function defined on Q. It is required to search some ¢* € Q such that
f(¢") =max{f(q) | ¢ € Q}.

Every ¢ € @ is called solution and ¢* is called optimal solution. If I is fixed subset of
the set of indices {1:n} then any § € [];c; B; is called as partial solution and designed as
PS.

Since all sets B;,72 € 1:n, are distinct then we can consider every solution—vector
g = q[l:n] € By X By X ...x B, as the set ¢ = {¢[i] | ¢ € 1:n} and every PS—vector
6 = 6[I] € [1;c; Bi as the set § = {6[s] | i € I}.

With every PS ¢ we shall connect the set R(¢) = {g € @ | § C ¢} of all extensions of é.



Let D be a PS family and R(D) = UsepR(6). The family D is called complete if

R(D)= Q.
Suppose that every PS § is evaluated by the estimation E(¢) so that it holds

E(8) = f(q) » q € R(8).
Let 7 = f(go) where ¢ is some solution. PS ¢ is called shutted if
E)<r

and PS family D is called shutted if every 6 € D is shutted and ¢y € R(D).

If PS family D is shutted then the solution ¢, gives local optimum in the area R(D).
If we were fortunate to construct PS family D which turns out both shutted and complete
then DOP would be solved and ¢o would be optimal solution.

Now for search of optimal solution we can use two approaches: primal and dual. In
primal (respectively dual) approach complete (respectively shutted) PS families D are
constructed step by step and process come to a stop when current D becomes shutted
(respectively complete).

Well known branch and bound method realizes primal approach in which each family
D is the family of all branches in PS tree. Closed diagrams make it possible to construct
"nontreelike” PS families in primal approach and to realize dual approach.

3.2 Closed diagrams in DOP
Let B in diagram (A, B, D) be interpret as DOP family {By, B, ..., B,} and D as some

PS family. From definition of closed diagram it follows that if diagram is closed then D is
complete PS family.

So we can realize primal approach by crossing from one closed diagram (A, B, D) to
another. In every such diagram the family B is the same. But the family D is changed so
that set of all solutions ¢) would be covering by sets of solutions decreasing step by step.
It means that PS in D will be extended step by step. Process will stop when all PS from
D would be shutted. Usual branch and bound method uses a primal tree as family D.
Use could be made of "nontreelike” families D. In Section 5 we shall consider technique
for nontree-binding of PS families.

But at first in next Section we consider how closed diagrams are used in realization of
dual approach.

4  Dual branch and bound method

Let PS family D is shutted. It follows from duality that to verify completenes of D we
should verify all paths in D. If each path contains a set from DOP family B = {B; | i €
1:n} then D is complete. Otherwise we shall add to D new sets for doing D ”more
complete”. Show how this can be doing in the case when each B; = {7, -i}.

Suppose that we can construct shutted PS family D by some heuristic considerations
in DOP. Then dual branch and bound method [13] is started with this D and consists in
follows steps.

1. Let m be a path in D such that B; € 7 for no 7 € 1:n.

If such path no exists then stop. Solution ¢, defining shuttedness of D will be
optimal solution in this case.

Else go to 2.



2. Replace every entry in 7 by its negation. Obtained set I(7) we call inversion. In
the family D U I(7) each across inversion I(7) continuation of the path 7 contains
a set B;.

3. Consider inversion I(7) as PS and evaluate it.

If PS I(7)is shutted then we have new shutted PS family DUI(7). Put D := DUI(7)
and go to 1.

Else PS I(7) is continued to be shutted. Let PS § be shutted continuation of PS
I(7). In the worst case PS § will be a solution. Put D := D U § and go to 1.

5 Plaits and bound method

5.1 Nontreelike closed diagrams

To verify closedness of a diagram (A,B,D) we can construct either primal or dual tree
(see 2.1 Duality). With every primal tree 7" we connect the value v(7T) — the number
of branches in T'. Let 7 be the set of all primal trees for the diagram (A4,B,D). Put
v* = min{o(T) | T € T}. Primal tree T with v(T') = v* is called minimal tree and v* is
called minimal value. Closed diagram (A, B, D) is called treelike (nontreelike) if v* = |D|
(respectively v* > |DJ).

In the example 1 family D itself consists of all branches from minimal tree. So minimal
value v* = 4 = |D| and the diagram is treelike.

Depicted primal tree from the example 2 is minimal tree and minimal value v* = 8 >
4 = |D|. Thus in this case the diagram is nontreelike.

PS family D is called nontreelike if (A,B,D) with B = {B; | ¢ € 1:n} be nontrelike
closed diagram.

Next example may be useful for construction nontreelike PS families in DOP where
each B; = {i,—i}.

Example 4. Let A= {7, -i}. Consider diagram (A, B, D) presented by tableau

i€ln
1 -1
2 =2
1 2 n| :1 2 n—1 n
-1 =2 -+« —m|n -mn =2 =3 ... -n 1l

It is not so hard to verify that minimal tree T in this case is of the form

Thus we have v* = »(T) = 2n > (n+ 2) = |D| for n > 2 and (A4, B, D) is nontreelike
closed diagram.

By using nontrelike complete family D we can construct PS tree such that a complete
family D defines branching in every node of this tree. We call this generalization of usual
PS tree as Kowalski tree. Some branching in Kowalski tree may be repeated in contrast

with usual tree. But in algorithmic realization it is possible to avoid such repetitions.
Every subtree of Kowalski tree would be supply a nontrelike PS family if nontreelike
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families are used for branching. Follows technique allows to bind nontreelike families by
another way.

5.2 Plaits and D—product

The set Q@ = {Dy,...,D,,} of families we shall call plait. Every w € D; x...x D,, is a
sequence w = {8y,...,6,,} of sets. Let 6(w) = U=y 6;.

Family P(Q) = {é(w) |w € Dy X ...x D,,} is called product of plait Q. Product is the
special case of D-product which is defined as follows.

1. Let @ = {Dy,..., D,,} be a plait. Correspond to every § € D; its own name a(§)
from some set A.

2. Let X; ={a(d)]| 6 € D;} be the set of D; names and (A4, X,Y) where X = {X, |7 €

1:m} be some closed diagram. It is called pattern.

3. Correspond the set 6(y) = Ugs)eyd to every names set y € Y. The family D =
{6(y) | y € Y} is called D-product of plait €.

Example 5. Let Q = {Dy, D,, D3} be the plait with

Dy ={{a,b}.{c,d}}, D>={{e},{a}}, Ds={{e},{b}}. I we put

X1 = {17_'1}7 Xy = {27_'2}7 X = {37_'3}

and use closed diagram from example 4 for n=3 as pattern (4,X,Y) by setting

X :=B, Y :=D then D-product of plait € is the family

D= {{aa b, 6}, {Ca d,a, b}7 {(L, b}7 {6, b}7 {67 ¢ d}}

Theorem 6. If every D; in the plait Q@ = {Dy, Ds,..., D} is complete PS family then
D-product of this plait is complete PS family.

The proof consists in direct application of definition of closed diagram [15].

By using of D-product technique we can consider plait as generalized branch. To work
with a plait as with usual branch we must to evaluate its. Recall that PS family D is
shutted if every 6 € D is shutted. Plait Q = {Dy, D,,..., D,,} will be shutted if its product
P(Q) considering as PS family is shutted. If we would be in position to evaluate plait (all
PS from P(€)) broadly without consideration its product but via common analysis of
families D; then using of plaits could be efficient.

Moreover we can consider the generalization of D-product which consists in partition
of PS families by subfamilies — blocks and in naming of PS blocks but not single PS. Then
a plait of blocks will be corresponded to every names set y € Y. With such plait we can
to work separately. By replacing in branch and bound method branch with plait of blocks
and PS tree by this block generalization of D-product we shall obtain plait and bound
method [15].

Next example illustrates how D-product may be used in forming new nontreelike closed
diagram from given nontreelike closed diagram.

Example 6. Let set () in DOP is defined as

Q= H ({ag, zi} x {bs, yi} x {bi, i })-
1€1ln
Put
a; bZ C; Ui Ti
LiYi Zi
C; Z; Y; Z; ZT;

Then (B; | D;) presents a special case of nontreelike diagram from Example 4.
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Split D; at two parts
a; T
i T b e
vi:(bi yi) and wi:<a2 ¢ cl)
Yi Z X
¢z

and consider pattern

(XlY)z(“ -

wl w2 PR wn

vy wp Wi Wp_1 Wy
’l)2 US PR ’l)n

The application of D-product replaces every entry in Y by its columns. After this every
column in Y would be a plait. Replace plait (vw+l1)’ i € {1:n — 1}, by usual product
G; = w; X v;41. Then diagram

(Bn | Dn) = (B1B2 . Bn | lel . .G’n_lwn)

would be closed.
Let g, be the value of minimal tree for this diagram. In [15] it was proved that ¢; = 6,
g2 = 16 and for n > 2

n—1

to =0+ (0= 0) (X For 277 4 (n = Fy+1) - 272)

=2

where F;_; and F; are Fibonacci numbers (Fy = Fy = 1, Fyy1 = Fy + Fy—1) and
F, <n< Fpy.

From evaluation F, = O(a*) where a &~ 1.6 with regard to the last inequality we have
an evaluation ¢, = O(n*®). However |ID"| =2+ 6(n — 1)+ 3 = 6n — 1. Thus ¢, > |D"|
and diagram (B” | D”) would be nontreelike.

6 Conclusion

Usual branch and bound, branch and bound with Kowalski tree and dual branch and
bound methods are compared for knapsack problem. Testing was executed by A.Kosenko.
More then 1000 tests were performed with knapsack problems of size 100.

For the most part dual branch and bound method has gone up both by time and by
the number of evaluated PS. This is because very good estimation and ordering of items
are known in knapsack problem. And dual method quickly proves optimality of heuristic
found solution by search of refutations. Primal method proves optimality by search of
best solutions.

We hope that nontreelike primal technique will be good for problems in which it is
hard to guess right optimal solution and plait technique will be able for problems in which
partial solutions are joined in blocks with common characteristic by semantic way. May
be well known quadratic assignment problem is a such problem.
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